STAAR PHYSICS REFERENCE MATERIALS

FORCE AND MOTION

Average velocity = $\frac{\text{displacement}}{\text{change in time}}$	$v_{ m avg} = rac{\Delta d}{\Delta t}$
$Acceleration = \frac{final \ velocity - initial \ velocity}{change \ in \ time}$	$a = rac{V_{\mathrm{f}} - V_{\mathrm{i}}}{\Delta t}$
Acceleration = $\frac{(\text{final velocity})^2 - (\text{initial velocity})^2}{2(\text{displacement})}$	$a = \frac{v_{\rm f}^2 - v_{\rm i}^2}{2\Delta d}$
$Displacement = {initial velocity} {change in time} + \frac{1}{2} (acceleration) {change in time}^{2}$	$\Delta d = v_{i} \Delta t + \frac{1}{2} a \Delta t^{2}$
Centripetal acceleration = $\frac{(\text{tangential velocity})^2}{\text{radius}}$	$a_{\rm c} = \frac{v_{\rm t}^2}{r}$
Net force = (mass)(acceleration)	F _{net} = ma
Work = (force)(distance)	W = Fd
Torque = (force)(lever arm)	$ au=\mathit{Fr}$
$Power = \frac{work}{time}$	$P = \frac{W}{t}$
Pythagorean theorem	$a^2 + b^2 = c^2$
GRAVITATIONAL, ELECTRICAL, AND MAGNETIC FORCES	
Force of gravitational attraction between $= \begin{pmatrix} universal gravitation \\ constant \end{pmatrix} \left(\frac{\begin{pmatrix} mass of \\ 1st object \end{pmatrix} \begin{pmatrix} mass of \\ 2nd object \end{pmatrix}}{\begin{pmatrix} distance between \\ centers of objects \end{pmatrix}^2} \right)$	$F_{\rm g} = G\left(\frac{m_{\rm 1}m_{\rm 2}}{d^2}\right)$
Force between 2 charged particles = $\binom{\text{Coulomb's}}{\text{constant}} \left(\frac{\binom{\text{charge of}}{1 \text{st particle}} \binom{\text{charge of}}{2 \text{nd particle}}}{(\text{distance between particles})^2} \right)$	$F_{\text{electric}} = k_{\text{C}} \left(\frac{q_1 q_2}{d^2} \right)$
Electrical power = (voltage)(current)	P = VI
$Current = \frac{voltage}{resistance}$	$I = \frac{V}{R}$
Equivalent resistance for resistors in series R	$= R_1 + R_2 + R_3 + \dots$

Equivalent resistance for resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$

STAAR PHYSICS REFERENCE MATERIALS

ENERGY AND MOMENTUM

Kinetic energy = $\frac{1}{2}$ (mass)(velocity) ²	$KE = \frac{1}{2}mv^2$
Gravitational potential energy = $(mass) \begin{pmatrix} acceleration \\ due to gravity \end{pmatrix}$ (height)	PE _g = mgh
Elastic potential energy = $\frac{1}{2} \begin{pmatrix} \text{spring} \\ \text{constant} \end{pmatrix} \begin{pmatrix} \text{distance stretched} \\ \text{or compressed} \end{pmatrix}^2$	$PE_{elastic} = \frac{1}{2}kx^2$
Energy = (power)(time)	E = Pt
Work = change in kinetic energy	$W = \Delta K E$
Mechanical energy = kinetic energy + potential energy	ME = KE + PE
Law of conservation of energy	$KE_{i} + PE_{i} = KE_{f} + PE_{f}$
Momentum = (mass)(velocity)	p = mv
Impulse = (force)(change in time) = (mass)(change in velocity)	$J = F\Delta t = m\Delta v$
Law of conservation of momentum $m_1 v_{1_1} + m_1 v_{1_1}$	$m_2 v_{2_i} = m_1 v_{1_f} + m_2 v_{2_f}$
Heat gained or lost = $(mass) \begin{pmatrix} specific \\ heat \end{pmatrix} \begin{pmatrix} change in \\ temperature \end{pmatrix}$	$Q = mc_{p}\Delta T$
WAVES AND LIGHT	
Velocity = (frequency)(wavelength)	$v = f\lambda$
1 1 1	1 1 1
$\overline{\text{Focal length}} = \overline{\text{distance to image}} + \overline{\text{distance to object}}$	$\frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o}$
Energy = $(mass)(speed of light)^2$	$E = mc^2$

STAAR PHYSICS REFERENCE MATERIALS

CONSTANTS AND CONVERSIONS

$c = \text{speed of light} = 3.00 \times 10^8 \frac{\text{m}}{\text{s}}$
$g =$ acceleration due to gravity = 9.8 $\frac{\text{m}}{\text{s}^2}$
$G =$ universal gravitation constant = $6.67 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$
$k_{\rm C}$ = Coulomb's constant = 8.99 × 10 ⁹ $\frac{\rm N \cdot m^2}{\rm C^2}$
$m_{\rm E}^{}$ = mass of Earth = 5.97 $\times 10^{24}$ kg
$r_{\rm E}$ = radius of Earth = 6.37 × 10 ⁶ m
newton (N) = $\frac{\text{kg} \cdot \text{m}}{\text{s}^2}$
joule (J) = $N \cdot m$
watt (W) = $\frac{J}{s} = \frac{N \cdot m}{s}$
hertz (Hz) = $\frac{\text{cycle}}{\text{s}}$